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ON THE ACCRETION OF INHOMOGENEOUS VISCOELASTIC 
BODIES UNDER FINITE DEFORMATIONS* 

V.V. METLOV 

A formulation is given of the problem of the state of stress and strain 
of a continuously accreting body under finite deformations. The concept 
of a deformation gradient in an accreting body taking the deformation 
prehistory of the attached elements into account, is introduced. Boundary 
conditions are considered on the growth surface, which differ from the 
usual conditions in stresses or displacements. A solution is obtained for 
problems on the accretion of an inhomogeneous viscoelastic cylinder 
subjected to the preliminary deformation of the attached elements, to 
twisting, stretching, and imprinting loads, as well as on the simultaneous 
accretion and removal of a hollow sphere. Results of computations for the 
problem of winding a viscoelastic inhomogeneous cylinder with tension are 
presented. 

1. Kinematics of an accreting body, Governing equation. By the accretion 
of a body we shall mean the continuous attachment of new elements to parts of its surface 
(the growth surface). The model of a continuously accreting body can describe the process 
of successive erection of structures, the gradual formation of a solid during a phase tran- 
sition, the fabrication of bodies by means of winding, etc. 

For fixed (non-accreting! bodies the reference description of the motion j, =x(1. x) is 
taken, where x is the radius-vector of a material point (particle) in an actual (running) 
configuration, and 1 is the radius-vector of this point in a fixed reference configuration.. 
The governing equation is here written inthe fairly general form /l/ 

T(f. S)= Q,,(t -lo, F!(SJ. S), F(T. X)= G.Y~(r. X) (1.1) 

Here T is the Cauchy stress tensor, @, is a functional dependent on the chosen reference 
configuration x. and F!(S) = (F (s. X) = F (t - s. S).!I < s(m) is the prehistory of the gradient 
F(1.X) of the deformation from the reference cor,figuration x into the actual configuration 
X(T) up to the running time t. The relationship (1.1) should satisfy the condition of invariance 
relative to the Galilean space-time transformation grocF /l/. Invariance relative to the shift 
of the time origin results ir,th.s fact that for a body with properties varying with time the 
functional 0, cari depend on the time t only by mear.s of the difference t - i,, where t, is a 
certain fixed time that car. be taker, as the time of body fabrication (generation). If different 
elements of an ageing body are fabricated at different times 2, = to(X). then it possesses an 
age inhomogenelty that was first investigated in /2/. 

The feature of ar. accreting body is that it is impossible to fix any reference configuration 
of its particies since it is car ,tinuously supplemented by new particles. The purpose of this 
paper is to construct ananalocue of the deformation gradient for an accreting body. 

The trlplet of numbers (T*. ul. u3) is the marker for particles being attached during 
accretion, where T* is the time of particle attachment to the body, and (ul. us) are its 
curvilinear coordinates on the growth surface S' (T*). In the general case, an arbitrary 
three-dinensional parameter _ E. mutualiy related or,e-to-one with the triplet (T*, ul. u?\. can 
be taken as marker. Since differczt par-,icles car. be attached tc the accreting body at differer.t 
times at the very sa:e p0ir.r; of space, or cor,rinxous attachement of particles in one site can 
occur (for a fixeci growth surface), the partlcie radius-vector at the time of its attachment 
s (E) cannct generally be its marker. 

Solving the equation z = x (1. E) for E and substituting E = 5 (t.r) into the particle 
velocity function x' (!. i). we obtain a spatial velocity field v(1.x) such that v (t.x(t,i))=-X' (t. i! 

(here and henceforth the dot denotes the partial derivative with respect to time). If the 
field v (t. r)is given, the motion. x (1. t) is found by integrating the ordinary system dx dt = v Ct. 

X). x (T*) = x (i). 
The second-rank tensors are henceforth treated as linear amppings of a three-dimensional 

Euclidean vector space intc itself /l/. The composition (matrix product) of the tensors A 
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and B is denoted by A& and the result of tensor A acting on the vector a by AIL The 

matrix of the components Aki of the tenser A in &me basis (ek)h,+,,a is determined by the 

expansions Aeer = Alei (summation is over repeated subscripts). The spatial argument x as 

well as E (respectively, X) is sometimes later omitted in the function. In equations 
containing functions of the variables x and E (respectively, X) simultaneously, it is 

assumed that these variables are connected by the relationship x = x(t, E) (respectively, x = 

x (G X)). 
The gradient F of a fixed body possesses the following properties. 
lo Let Q, (t,X)be the deformation gradient when the body passes from the configuration 

x (7) into the configuration x (t). We denote the spatial velocity gradient by G (t, X) = V,v (t, 

x) Ix=rKx)* The following relationships then hold (I is the unit tensor): 

(l-2) 

The first formula 
represents Q%(t) as a 

Eqs. /l/ 

is the rule of multiplication of gradients, and the second, which 
multiplicative integral /3/, is a consequence of the differential 

F'(r,X)=C(t,X)F(t,X), QT'(t,X)=G(t,X)Q,(t,X) (1.3) 

20. The density of the body mass in the actual configuration is p(i, X) = px (X) detF 6, 
X), where px is the density of the mass in the reference configuration; in particular p (t,X) = 
p (1, X)idetQr(f, X). Hence, and from (1.3) we obtain the equation of continuity /l/: p' i p div, 
v = 0. 

30. On substituting a reference system generating an orthogonal transformation of space 
with the tensor O(t). the deformation gradient is transformed by means of the formula /l/ 

F* (t) = 0 (t)F (t). 
At any time T satisfying the condition t > r* (E)? the accreting body contains the 

point 6 together with its neighbourhood. Therefore, the deformation gradient Q7 (1, E) can 
be determined when the neighbourhood of the point E passes from the configuration X(T) into 
I(1) for any i> 7> T* (E;), We will here have 

Q~(2,i)=G(1,E)Q,(f,E). QT(r,E)= $(17G(~,f)d~). G(T,E)=~~Y(T,s) (1.4) 

Extending the function QT (f. 5) in continuity to the point T = 7* (E). we obtain Q (f. E) = 
lim QY (1. E) (as T-Y T* (E) + 0), the gradient of the deformation when a body element passes 
from the initial state into the actual state at the time of attachment. At the time of 
attachment 7* (;) I a body element in the neighbourhood of the point E can have a deformation 
gradient F,(E)different from I with respect to a certain reference state because of the 
prehistory of its deformation. Using the gradient multiplication rule, we obtain for the 
deformation gradient during element passage fron the reference to the actual state 

F(~.E)=Q(~.~)F,(~J Q(t.$)= 1 (I-G(T,~)~T) (1.5) 

r*& 

The gradient F(2. i).defined by (1.5), possesses the properties I- - 3' on replacing X 

by E and px 0) by p. (9 , the mass density of body elements inthe reference state. Using the 
functional @that satisfies the condition of independence from the reference system /l/, we can 
write the governing equation for the accreting system in the form 

The initial state of stress T* (E) = @ (T* - t,. F', E) satisfies the equilibrium condition 
with external force action on the growth surface S* (T*) with normal n 

T*(i) n = P(T*(~). ~)/~~s.u.) (1.i) 

where P(t, r) is the stress vector acting on s* (1). The remaining three components of the 
initial stress tensor T* (E) as well as the tensor F, (E) = F (r* (Z,)E) are determined by the 
prehistory P' of the element deformation in the neicrhbourhood of the oarticle E /4/. 

Let us present the formula determining Q (t, E)for twc particular kinds 
Suppose the tensors G (1, E) commute for all ?> e(E). Then 

of deformation. 

Qir,F)=expj~SsGiT.E)~T} . 
Let the initial radius-vector X (E)be one-to-onefunctions of E so that 

represented as a function of x = x (1. X). Then 

(1.8) 

the motion can be 
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Q(t, X) = Fz(tt X)F;‘(+ (X), X), Fi(t, X) = V,%(t, X) U.9) 

2. Kineznatics fOmuhS in an aCCOZq%mying basis. Let (&$_i,s,a ba a set Qf 

marker cooxdinates E = E (z*.u~, u&. As in /5, 61, we introduce the basis vectors 
* (t, &'c+g', 1> T* (E). 

e, (t. 5) = 
We set 

ei*@ = T2;)+0ei(~j 81 ei"@= F;'(E) e,CG)7 gij = (ei *ej) 

Bij + = (e,**ej*), giP= (et"-e:), &ij(tr %) =(g*j - gijq/% 

where (a.b) is the scalar product. We then have 

ei(t,E)=Q(t,E)el*(E)=F(t,5)epfE), Q(ttE)=ei(t,t)~e*i(E) 
E, = E&” & e”j= “is (C -I), C = FTF, F =ei @ eoi 

E 1 = a+' Be'= l/*(1-- B-l), B = FFr 

(2.1) 

Were a 12 b is the tensor (dyadic) product of the vectors a and. b /l, 5, 6/, E, and E, 
are the first and second finite deformation tensors /6/, Fr is the transpose of the tensor 
F. e,j and t‘*, j are the strain ratetensorcomponents /5/, D = (G -+ G*)'2 , and the spatial 
velocity gradient in the basis P' z e1 (i. 5). (e"'). (e*') and (e') are bases reciprocal to (ei"), (ei*) 
and (e,), and A-’ is the inverse tensor to the tensor A. 

3. Accretion law, Formulation of the boundary value problem. The process 
of new element attachment to the accreting body is characterized by the flux density vector 
of the substance being attached J (I. x) on the growth surface S* (t). Considering 
balance on the growth surface, we obtain the condition 

Here [I* is the volume mass density of the elements being attached J,(Oand 
projections of the vector J and the material velocity v on the external normal n 
-% is the velocity of the motion of the surface S* along the normal n. 

At the time 1 = 0 let accretion of the initial body occupying the domain o0 _. I~. 

L;, are the 
to S*. and 

start on 
part of its surface S* (0). Stress and displacement vectors, respectively, are given on 
other parts of its surface S.,(i) and s, (t) . The flux vector J (i,~) or the flux component 
J,, (0 along the normal to S* (t) is given in formulating the boundary value problem on 
s* ff): furthermore,the value p"(E) of the density, the magnitude E&x) and the prehistory 

of the gradient F" = (F (T. E).r f 11, (:).7* (:;I. F (T* (E). F\ = F, (F), that satisfies condition (1.7) 
as well as the vector b(t, x) of the mass fcrce density are given. It is required to determine 
the law of variation of the domain D(t) occupied by the body, and the deformation X(f. E) 
satisfying the boundary condition (3.1) and the quasistatic equilibrium equation diy,T + pb= 
0, where T is defined by the relationship (1.6) and the density is ~(1. g} =&(E) detF (t, !:. 
It is simultaneously necessary to find the deformation ~,,(t, Xi,)of the points ?i,f n, of the 
initial body that satisfies the equilibrium equation, the boundary conditions on S,(t) and 

s, (1) 3 and the conditions of connection with the grown part of the body. 

the,mass 

4. On accretion of a viscoelastic hollow incompressible cylinder, Let 
(8,. @,.z,) be cylindrical coordinates in the initial configuration of the original hollo*& 
cylinder R, = {(R,,Q,.Z,):R,< R,< R,). Starting with the time 1 = 0 its outer accretion 
occurs with a radial flux vector of magnitude p.l,(t). where p is a constant density. The 
internal pressure pi (i) and external pressure P,(tj f the axial force P, (t) and the torque 
AI, (tj, that change continuously for zero initial values, start to act simultaneously. Let 
(T, T, z) be cylindrical coordinates in space, and c(t) the external radius of the cylinder. 
We seek the spatial velocity field in the form 

c, = 1 (1. r). VP = * (1) 2. I', = a (I) 2 (4.1) 

The incompressibility condition divxv (1. x) yields 6f'dr + fr + a = 0, from which we find 

(B (f) is an undetermined function) 

f (i. r) = --a (f) r 2 J- @ ff).r f4.2) 

Let rO (1. R,). qO (i, 8,. ZO). z0 (t.Z,)be cylindrical coordinates of the running radius vector 
x = xo(t.Xo) of the point X,(R,. @,.Z,) of the original cylinder r(t,r*), q (t. T*. @.Z).:(f.r*,Z) 
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are cylindrical coordinates of the running radius-vector X-x(t,t) of the point F=(T*,e,Z) 

of the grown pert of the cylinder, where (8, Z)are particle coordinates at the time of its 

attachment t* to the growth surface Li'* (r*)= {(r, 9, ~}:r = c(F)}. Integrating the ordinary 

system corresponding to [4.1), and taking account of (4.2) we obtain 

r~*(t, R,)= &,*a(t,O) f 50&T) 2/3(T)dT (4.3) 
0 

o(l,r)=erp{--; a(s)&) f 

~‘(f~T*f=C2(TS)U(t,7*)I i U(t,T)@(T)dI 

1’ 

We use the relationships /l/ 

bX hi=-, A,,- 
irX’ 

- rl,‘i e,;/ . Ih’/ 

74-4) 

in calculating the deformation gradient, where -7'(x) and X'(T)@. I = 1. 2, 3) are arbitrary 
coordinate systems in the actual and reference configurations, fhj.h') = 6j', and Ai1 are physical 
components of the tensor A = _4i'lek 1 hi in the orthcgonal curvilinear coordinate systems 
(2 (x)) and (Xl (X)). 

For points of the grown domain it is first necessary to express the coordinates at the 
time t in terms of coordinates at the time r> T*. The corresponding formulas have the form 

(4.5) 

u;(:)=(1(~)-rr(.i3(‘)2,. r(fj=z(rf’n(f,r) 

Let e, (x) and e, (SJdenote unit vectors cf the basis in the cylindrical coordinate 
system in the actual and initial configuraticns ei* (F) = F, (S (:)), i = I. 2. 3. S (:) = K(T* (Ej,ij. 
Evaluating the tensors F, (!. S,,) = '?.Y x0 (I. S,,) and QT (:. ii by means of (4.3)-(4.5) and letting 
T--r r*. we have for the non-zero physic al components of the tensors F, (t, X0) = F,? (f. R,)e, (x) 

g ej (xc,) and Q (t, E) = c)ij (t, -c*)ei(s)@ej* (E) the following relationships: 

F,,” = (A$,)-‘. Q,, = (A,B,)-‘. F2; = B,. Q,? = B, (4.6) 
F1; = CO- Qg3 = C,. F,,c = A,. Q33 = A, 
A0 = Q (t, 0)-l, A, = a (L ?*)-I 

3, = T@ (t, ROl,‘R,. B, = t (1, T*) ‘c (T+) 

o=~o(t.Ao)~~(r,n)-l~(r)d?, 

f 

c Cl=r(t.~*) c o(T,P)-l$(T)dT 
0 ;* 

Let the gradient prehistories (F (T. E).&(E)< T<T*) satisfy the relations t, = &(r*), F = 
F,, (7. r*)gi (z, f) @ gj" (E),where fgi(T, 6)) is an orthonormaXzed basis such that 
gj”(E) = g( (to, E). The matrix of the compcnents Pi, (7,7*) here has, 

Pi (T', E) = ei+ (E), 
for TE I~o,T*], the structure 

(4.6) with parameters d2.B2.C2 dependent cn f and T*. A continuous model of the accretion of 
thin-walled tubes experiencing torsion bv oreliminary deformation, axial tension, and impression 
/l/ can be an illustration. of the deformation prehistory considered (comparewith (4.3) and (4.61) 

r = If R2/e (tj T b (t), cp = 8 -t Y (t) 2, I = e (1) Z (4.7) 

The total deformation gradient for t>T*(E) will be (F,(E) -I;j,(l*)e~*(~~~lg&"(~)) 

F (t, ff = Q (tt E) Fe #I = Qij (ts T*) Fjl+ (t*)ei (xi @ C’(E) I= Fe (tt +):ei (x) @ e?(E) Wf 

Multiplying the matrices (4.6) according to (4.8) we obtain the following expressions 
for the non-zero components Fir(t, r*)(t> r*) 

FIX E: (AB)-', F,, = 3, F,, = C, F,, = A (4.9) 
A = A’A,, B = B*B,, & = PB, -6 A’C, 
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A* = At W, +I, B* = B, (T+, T*), C* = c2 (r*, r*) 

We take the ViSCOelaStiC analogue of theequation for a neo-Hookean body proposed for 
rubberlike filled polymers* (*Adamov, A.A. Construction of the equation of state of a visco- 
elastic weakly-compressible material under finite deformations. Candidate dissertation. 
Perm, Ural Science Centre, USSR Academy of Sciences, Institute of Mechanics of Continuous 
Media, 1979.) 

T=-ppI+F(t)L(t--0,[I-C-'trC/3]')Fr(t), C=F’F (4.10) 

as the governing equation. 
Here p is the hydrostatic pressure, L is a linear functional acting according to the 

rule (a' (s) = rf (1 - s)): 
I--I. 

L(f-to,&= s ~(t--to,l--ta-s)d,cp’(s)= ~a(t-two)d&) (4.11) 
0 t, 

For small deformations (4.10) becomes the governing equation of linear viscoelasticity 
T = --yl $ 2L (2 - t,, [E - I trE/31’), where E is a tensor of infinitesimal deformations. 
Therefore, if the body is subjected to the governing Eq. (4.10), then p (I - t,, 'I - lo) is the 
relaxation function for small shear deformations. 

The tensor C (1, E) for to< r<r* equals 

c(T,E)=(FII(Tl T*)ej"(E)3 gi(TIE))(Fkl(i- T*)3k(r.E) P gl" CO)= (4.12) 

F,; (T,T+) Fi, (1. T*) BP (5) 8 g1” (5) 

We similarly obtain 

C(t,E)=&"(i) xl;J;(E)F,<(t, T*)F,j(l, T*), t >r* (4.13) 

According to (4.12) and (4.13), the non-zero components of the tensor C(f,E) are the 
foliowing for all 12 t, (T") in the basis gl"(E) $J ej"(E) : 

c,, = (Ai3/-2, c,, = 82, c,, = c3: = BC, cs3 = c* + ‘42 (4.14,l 

Here all the componer,ts are functions of t and T* and for t < T* we have 4 = A,. B = B,. 
c = c*. According to (4.10) and (4.14), the non-zero components of the tensor H=T+pI 
are equal in the basis e,(r) 3 e,(x). to 

H,, = (AR)-?L (t - 1,. II - (AB)?I,l’) (4.13) 

Hz2 = PL (i - t,, II - ((C AL?)? - IF) I,]‘) - 

(C’ - 2BC)L (t - 2,. Q:), Q = A-2B-‘C11 

H,, = H,? = -ABL (t - lo. Q’) 1. ACL (t - t,, 11 - A-?I,l’) 

H>; = A’L (t - f,. [l - A-21,]‘), I, = [(AL?)-’ + B2 - C’ - A?1 3 

The components of the tensor H in the basis ei(x) y e,(xJhave the form (4.151 also for 
points of the origlna: cylinder if A,B!C are replaced by A,.B,.C,. The time I, can depend 
on R, for points of the original cylinder [age inhomogeneityj; the kernel p can also contain 
an explicit dependence on A, (respectively, on T* for points of the grown part), i.e., I"= 
p (1. 7. Ii,) (respectively, 1, = 1, (1. T. 1:)). Under these conditions the components of the 
tensor H depend only on t and R, (t and T*, respectively). From the relationships (4.3) we 
find theinverse functions R, = R, (1.r) and T* = T* (t,r); by substituting them into the 
functions H,,(t, R,) and Htj(l, T*) we obtain that H,, = Hij(t, r). Hence, and from the 
equilibrium equation div, (H - p1) = 0. we will have 

brOl - d'r = 0. asp = 0, a,p = 0 
0, = 7,,. UG = T,,, ur = Tae 
u=rJq-U,' T = TiJei (x) a e,(x) 

(4.16) 

and analogous equalities for points of the original cylinder. Hence 

p = jQ (f. r), T,j = T,j (t, r) 

a,= (t, r) = -pa (t) + v" (t, r) - 1" (t, r. (4 I?,)) 

ro v. RI) < 7 < 70 (6 R,) 

u, (1. r) = -pe (t) -L 1' (t, r) - v (f, c (f)), 

r (f. 0) < r < c (L) 

&Ii) 
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where o,', a0 refer to points of the original cylinder. 
mm the governing Eq.t4.10) we have 

u = H,, - H,I, 0, - 0, = H,, - H,, 
To3 = T,, = H,r, T,, = T,, = 0 

(4.18) 

and analogous equalities for points of the original cylinder. Therefore, the deformations 

and stresses are expressed according to (4.31, (4.61, (4.91, (4.15)-(4.18) in terms of the 

undetermined functions of the time a(%B(t),g(t) and c(t). The system of equations to 
determine them consists of the continuity condition for the radial stress on the boundary 
of the initial and grown domains (see (4.17)) 

V (t, r. (6 &)) - P (t, r. (t, f&N + V 0, c 0)) - (4.19) 

1’ 0, r 6, OH = (pi - PA @I 

the equilibrium equations of the cylinder endfaces 

(4.20) 

(where the zero superscript has been omitted, for brevity, on the functions of points of the 
original. domain), and the accretion condition (3.1) 

de/‘& = J, (t) - a ftf c (L)'2 -+ @ (t).'c (t), J, ft) > 0 (4.21) 

For a numerical example, we set M,=O and (z(t)=0 (plane deformation). Let Pi(t)=0 and 
pc (f) c 0. Therefore, there are no external loads, except P,. If there was no preliminary 
deformation here, i.e., F(r,t)si for to<?<?*. then there would be no stress (and P,sO).Let 

fo(T*)-=T* -0, and the preliminary deformation will be the elastic instantaneous deformation at 
time t* of the form 

F,(E)= Fts* ts e? + F&z* @e?+e~* 0 %*, F, = F. (T*) 

The formulation of the problem under consideration can be the model of a cylinder 
accretion process by means of winding with tension. The magnitude of the force u,*during 
winding is determined from (4.10): cto* = G(O)(F,*- F.-z), where G(t) = a&t) is the shear modulus. 

The problem reduces to determining the functions b(f) and c(r) from the system (4.19), 
(4.21). We make the change of variable r= &,(I, A,) in the integral over the original cylinder 
in (4.191, and r= rft, sf in the integral over the grown part, where according to (4.3) 

rp* (k Aoj = A,'$- 2b (f), r* (t, sj = C* (sj + 2 (b (I) - b (s)), b (I) E= \ /3 (I) dt, b (0) = 0. 

After changing the order of integration, Eq.14.191 in the presence of just the age inhomogeneity 
in the grown part will take the form (io(R,j _=Oj 

j&(W+‘,b(t))P (r)dr $ $ liz (t. T, c (‘I), b (t)) d? = iJ (4.22) 

p, f%? T, 4 = p (t - 0, 7 - 4 I, (S) c (5). to (f, s) i= r* (T, s) F,* fs) / c2 (s), 
T A T = min (7, T) 

h’, = I;, p, (t, f, T)IQ* (2P.* - F.-* - f) - Q-'(21",-2 - i-:,2 - 
ijl / r* (2, 'I) 

Q = r (I, rj / c (rf, F. = F. (‘i) 

where T is the time of growth termination. 
After discretization of the time, system (4.21) and (4.22) wassolvedby a step-by-step 

method. Eq.(4.21) was integrated by Euler's method; the integrals in (4.22) were evaluated 
by the rectangle formula. 
is the integration spacing, 

The non-linear equation in the quantity B,= @(tl), f,=jAt, where Ai 

have for the 
was solved at the j-th step by successive approximations, where we 

(n + i)-th approximation b(“*l) (tj) = b (tj+) + @“‘At, !3@’ = 0. t > The correctness and 
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accuracy of the calculations were checked by verifying the equilibrium Eq.(4.17). The modulus 
Gwas assumed to be constant in the computations 
/7/ {time is in conditional units) 

, and the kernel p is given by the formula 

p (f, +Y = 1 - e (r) fl - exp 1-r (t - r)l} 
s(r) = C + A erp (- B1~) 
C = 0.05, A = 0.75, & = 0.01, y = 0.1 

The ratio of the characteristic ageing time 8-1 and the relaxation time y-1 is in the 
tens, which corresponds to data on polymer ageing /8/. The stresses are measured in units 
of 4 and the distance in units of the inner radius R,. Let us give the following parameters: 
R, = 1.2; F, = 3.2; f,T = 0.8 . We have thereby fixed the sequence of raising and lowering /9/. We 
show in Fig. 1 the time dependences of the functions c(t) and 6(t) for 7=100 (solid line) 
and T= 20 (dashes); the dash-dot line is the dependence of the outer radius c(t) on time in 
the absence of tension (F,= 1). Diagrams of the stress o- /a,[- 10~1, respectively, at the 
time of growth termination f= 2' and at the time t= T+50 (the steady-state value of the 
residual stress), for T= 100 (solid line), and for T = 20 (dashes) are shown in Figs. 2 and 3. 

Growth of the compressive stress in the original cylinder occurs during accretion because 
of the pressure of the pre-stretched elements; tne initial stress o(f*)=O.i46 in the attached 
elements relaxes simultaneously. For T= 100 the relaxation of the tensile stress in the 
attached elements is developed to a greater degree than for T=ZO (Fig. 21, which results in 
a lower pressure on the original cylinder and less intensive creep (Fig. 1). After termination 
of the accretion, the creep rate changes sign and relaxation of the residual stresses occurs 
at all points of the cylinder. For T= 100 the cylinder is stiffer (because of ageing) and 
more inhomogeneous than for T = 20. Consequentlyt the process of residual stress relaxa-ion 
for T= 20 is very much more intensive than for T= 100, Hence, although the compressive*' 
stresses at the end of the accretion are twice as great for T= 20than for T=.100 (Fig. 2)‘ 
the residual stresses being relaxed at T= 20 are less than at T=jOO (Fig. 3). 

5. Accretion and reduction of a sphere, We shall understand reduction to be 
the opposite of accretion, i.e., a continuous decrease in the mass of a body because of removal 
of elements from parts of its surface (reduction surface). The reduction process can be 
given by condition (3.1) on the reduction surface where J,>O,J is the flux density of the 
substance being removed from the surface XX'&* is replaced by &?ic?t, x'ft, u,. ui) is the radius- 
vector of points of space that belong to the reduction surface p(t). (u,, ~,)are curvilinear 
coordinates on this surface, and p* (E) is replaced by p(t.X;) = pX (X):detF(t. X). The kinematics 
in a decreasing body and the boundary conditions for the stresses are the same as for a fixed 
body. 

Let(R. @. Ajbe spherical coordinates in the initial configuration of an original hollcw 
incompressible sphere Q, = {(R.9..1): R, Q R <RR,). At the time t 4 0 simultaneous reduction 
of the sphere from within and accreticn from outside starts with radial vectdrs of the flux 
of the magnitude pJi (t) and pJ,(1), respectively (p is a constant density). Internal and 

F1g.l Fig. 2 Fig. 3 

external pressures pi (t) and p,(t) that change continuously under zero initial conditions, act 

here. The spatial velocity field in the spherical coordinates (r,rp.I) will be 

up = f (t, r). I+ = 0, v, ir: 0 (5.f) 

The incompressibility condition div,v = 0 yields a//~% $ 2f'r = 0, from which f (t, r) = b (t)'r*, 

where p(f) is an undetermined function, From (5.1) we have 
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rp* ft. I?) = RS + 3b @J; 9 (L, r*) ka c,’ (T) + 3 lb (t) - b (T.)) (5.2) 

where c,(t) is the outer and c*(t) the inner radius of the sphere at the time t (the remaining 

notation is analogous to the notation in Sec. 4). 
For radial motion of the material points 

ej (r) IX-X({. f) = ei (X(E)) = ei+ 6) 

x f$) = xv G)? E) 

@?i (X) &,(t, It) = ei (XI), X E 20 

where ei(r) are unit vectors of the basis of the spherical coordinate system. Taking account 

of the initial deformation F, 1:) = F, (9’) (et* @ e2* -t- es* @I es*]+ KC2 (T*fex* @ el*, we obtain 

F(t, 5) = F(t, ~*)(e** Be,* + et* @ees*) + F’* (t, r*)el* $3 el* (5.3) 

F, (t, X) = F, (t, R) (es 8 e2 + e3 8 e3) + 
F<* (t, I?) e, C$ e,, ei = ei (X) 

F (I, 9) = F, (P) r (f, r*) ‘c, (r*) 
F, (1. R) = r. (t, R)/R, X = X (R, 8,Z) 

An arbitrary dependence of the kernel n on R is allowable in the governing Eqs.(4.10)- 
(4.11) fox the original cylinder and on T* for the incremental elements. 
the latter is any preliminary deformation of the form 

F (T, E) = FI (et* @ ez* + es* @ es*) + F&* @ eL* 

F, = F, (T, t*), t, (?*) < “I Q T* 

Under these conditions, we have for non-zero physical components of 

0, = ui, (I (t, r) = F* (t) L (t - t,. 11 - F-21,1’) - 
F-4 (t) L (t - t,, Ii - PI,)‘), I, = (2P +- F-4)/3 

(r = 0, - 0, 

Also admissible for 

the stress tensor 

(5.4) 

For brevity, the zero superscript is omitted here on the quantities F,, u,‘, u,“, o>.‘, that 
characterize points of the original sphere; also omitted is the argument r* (R, respectively) 
for the functions 1, and F, and the inverse functions T* (t,r) and I? (t,r) inverse to (5.2) must 
be substituted in place of T* and R. Integrating the equilibrium equation a,c, = 20 r, we 
obtain 

[Jr0 (1, r) = -_YI (1) + be’ (2. r) - 1’ (t$ Ci (f)) 

r E IQ (0, r. (t, I?,)1 
(5.5) 

0, (t? r) = --pe (t) 1 1. (t. r) - f’ ft. c, (t)) 

r E [r (1. O), c, (t)l 
~‘(t,rj+!+, y(1,r)i2j y)dr 

The system of equations to find the undetermined functions @ (1), c;(t)and c, (t) include the 
continuity condition for the radia 1 stress on the boundary of the orighal and accreted domains 
(see (5.5)) 

7.’ (t. r. (t: fl,)) - 1;” (t, ci (t)) + V (t? cr ft)) - 

1' (tq r (t, 0)) =: (Pi - PC) (1) 

(5.6) 

and the accretion fJ*> Oj and the reduction (.I,> 0) 

This research was announcec? in /lo/. After it had been sent to the editor, paper /ll/ 
was published where another formulation is given of the problem of finite deformations of a 
growing body. The author is grateful to N.Kh. Arutyunyan for supporting the research. 
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STABILITY OF BODIES MADE OF NON-HOMOGENEOUSLY 
AGING ANISOTROPIC, VISCOELASTIC MATERIAL l 

V.D. POTAPOV 

Results ofthe study of stability of compressed rods made of a non- 
homogeneously aging viscoelastic material are generalized to the case 
of an arbitrary body with anisotropy. 

Let us consider a body acted upon by volume forces F and surface loads q applied at the 
boundary of the body S,, in an orthogonal 
The points of the body undergo, 

Zi (i = 1, 2, 3), F = {Pi], g = {ql) coordinateas';s;m. 
under the action of these forces, the displacements , , 

determining the trajectory of the unperturbed motion. 
Let us assume that inthe initial state the body has a small initial distortion aniD( 

In this case the body undergoes additional displacements avi (t, x) so that the total displacement 
is u.* = 
to unity). 

u, + a (c., $ r$"). The parameter a is introduced arbitrarily (and can be assumed equal 
The motion of the body determined by the displacements ui* will be called 

perturbed, and the displacements cL'i will be called perturbations. 
Let us introduce the displacement norm (V is the volumeofthe body) 

Here and henceforth the repeated indices denote summation. 

Definition. An unperturbed motion of a viscoelastic body will be called stable, if for 
any number A > 0 a number 6 = 6(A)> 0 can be found such that for any initial distortion 
ct.i' satisfying the inequality ?I/ v'II< 6. the corresponding displacements a~‘, satisfy the 
inequality a//vjl<A. O<tCr. 

If the motion of the body is studied within a finite time interval IO,Tl and the critical 
value of the displacement norm j/ v/I*is given, we can speak of the critical time t,, defining 
it as the instant at which the displacement norm a/j VII first attains the value 11 VI/*: a maxI/ v 

(t)Il<IIvII*,O<~t(t, with aIIv(t,)lI=ll~l/*. 
We shall call the body stable in the time interval IO, Tl, if r,> T. 
Analogous definitions of stability were used in connection withthenon-homogeneously 

aging viscoelastic rods in Ii, 21 where TU,P[ y(t, r)l. ZE IO, 1) (I is the rod length) was used 
as the rod deflection norm. 

Assuming that the deformations are Small, we write the equations of state for the material 

in the form /l/ 

oij = (Ei~kl - Rijkl) Ekl (1) 
t 

~ijkl= ~ijki (t +  p (x)), Rij,lekl= S Rfjklekl (T) dT* &i = Rajkl (t i P (X)1 ’ + P(X)) 

The moduli of elasticity Einl and relaxation kernels @jkl of the material satisfy the 
following relations: 


